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Twitter is used extensively in the United States as well as globally, creating many opportunities to augment de-
cision support systems with Twitter-driven predictive analytics. Twitter is an ideal data source for decision sup-
port: its users, who number in the millions, publicly discuss events, emotions, and innumerable other topics; its
content is authored and distributed in real time at no charge; and individualmessages (also known as tweets) are
often taggedwith precise spatial and temporal coordinates. This article presents research investigating the use of
spatiotemporally tagged tweets for crime prediction. We use Twitter-specific linguistic analysis and statistical
topicmodeling to automatically identify discussion topics across amajor city in theUnited States.We then incor-
porate these topics into a crime prediction model and show that, for 19 of the 25 crime types we studied, the ad-
dition of Twitter data improves crime prediction performance versus a standard approach based on kernel
density estimation. We identify a number of performance bottlenecks that could impact the use of Twitter in
an actual decision support system. We also point out important areas of future work for this research, including
deeper semantic analysis of message content, temporal modeling, and incorporation of auxiliary data sources.
This research has implications specifically for criminal justice decision makers in charge of resource allocation
for crime prevention. More generally, this research has implications for decision makers concerned with geo-
graphic spaces occupied by Twitter-using individuals.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

Twitter currently serves approximately 140 million worldwide
users posting a combined 340 million messages (or tweets) per day
[1].Within theUnited States in 2012, 15% of online adults used the Twit-
ter service and 8% did so on a typical day, with the latter number qua-
drupling since late 2010 [2]. The service's extensive use, both in the
United States as well as globally, creates many opportunities to aug-
ment decision support systems with Twitter-driven predictive analyt-
ics. Recent research has shown that tweets can be used to predict
various large-scale events like elections [3], infectious disease outbreaks
[4], and national revolutions [5]. The essential hypothesis is that the lo-
cation, timing, and content of tweets are informative with regard to fu-
ture events.

Motivated by these prior studies, this article presents research an-
swering the following question: can we use the tweets posted by resi-
dents in a major U.S. city to predict local criminal activity? This is an
important question because tweets are public information and they
are easy to obtain via the official Twitter service. Combined with
Twitter's widespread use around the globe, an affirmative answer to
this question could have implications for a large population of criminal
justice decision makers. For example, improved crime prediction per-
formance could allow such decision makers to more efficiently allocate
police patrols and officer time, which are expensive and thus scarce for
many jurisdictions.

However, there are many challenges to using Twitter as an infor-
mation source for crime prediction. Tweets are notorious for (un)inten-
tional misspellings, on-the-flyword invention, symbol use, and syntactic
structures that often defy even the simplest computational treatments
(e.g., word boundary identification) [6]. To make matters worse, Twitter
imposes a 140-character limit on the length of each tweet, encouraging
the use of these and other message shortening devices. Lastly, we are in-
terested in predicting crime at a city-block resolution orfiner, and it is not
clear how tweets should be aggregated to support such analyses (prior
work has investigated broader resolutions, for example, at the city or
country levels). These factors conspire to produce a data source that is
not only attractive – owing to its real time, personalized content – but
also difficult to process. Thus, despite recent advances in all stages of
the automatic text processing pipeline (e.g., word boundary identifica-
tion through semantic analysis) as well as advances in crime prediction
techniques (e.g., hot-spot mapping), the answer to our primary research
question has remained unclear.

Wepursued three objectives: (1) quantify the crimeprediction gains
achieved by adding Twitter-derived information to a standard crime
prediction approach based on kernel density estimation (KDE), (2)
identify existing text processing tools and associated parameterizations
that can be employed effectively in the analysis of tweets for the pur-
pose of crime prediction, and (3) identify performance bottlenecks
that most affect the Twitter-based crime prediction approach. Our
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1 City of Chicago Data Portal: https://data.cityofchicago.org.
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results indicate progress toward each objective. We have achieved
crime prediction performance gains across 19 of the 25 different crime
types in our study using a novel application of statistical language pro-
cessing and spatial modeling. In doing so, we have identified a small
number of major performance bottlenecks, solutions to which would
benefit future work in this area.

The rest of this article is structured as follows: in Section 2, we sur-
vey recent work on using Twitter data for predictive analytics. In
Section 3, we describe our datasets and how we obtained them. In
Section 4, we present our analytic approach for Twitter-based crime
prediction, which we evaluate in Section 5. In Section 6, we discuss
our results and the runtime characteristics of our approach. We con-
clude, in Section 7, with a summary of our contributions and pointers
toward future work in this area.

2. Related work

2.1. Crime prediction

Hot-spot maps are a traditional method of analyzing and visualizing
the distribution of crimes across space and time [7]. Relevant techniques
include kernel density estimation (KDE), which fits a two-dimensional
spatial probability density function to a historical crime record. This ap-
proach allows the analyst to rapidly visualize areas with historically
high crime concentrations. Future crimes often occur in the vicinity of
past crimes, making hot-spot maps a valuable crime prediction tool.
More advanced techniques like self-exciting point process models also
capture the spatiotemporal clustering of criminal events [8]. These tech-
niques are useful but carry specific limitations. First, they are locally de-
scriptive, meaning that a hot-spot model for one geographic area cannot
be used to characterize a different geographic area. Second, they require
historical crime data for the area of interest, meaning they cannot be con-
structed for areas that lack such data. Third, they do not consider the rich
social media landscape of an area when analyzing crime patterns.

Researchers have addressed the first two limitations of hot-spot
maps by projecting the criminal point process into a feature space that
describes each point in terms of its proximity to, for example, local road-
ways and police headquarters [9]. This space is then modeled using
simple techniques such as generalized additive models or logistic re-
gression. The benefits of this approach are clear: it can simultaneously
consider a wide variety of historical and spatial variables when making
predictions; furthermore, predictions can be made for geographic areas
that lack historical crime records, so long as the areas are associated
with the requisite spatial information (e.g., locations of roadways and
police headquarters). The third limitation of traditional hot-spot maps –
the lack of consideration for social media – has been partially addressed
by models discussed in the following section.

2.2. Prediction via social media

In a forthcoming survey of social-media-based predictive modeling,
Kalampokis et al. identify seven application areas represented by 52
published articles [10]. As shown, researchers have attempted to use so-
cial media to predict or detect disease outbreaks [11], election results
[12], macroeconomic processes (including crime) [13], box office per-
formance of movies [14], natural phenomena such as earthquakes
[15], product sales [16], and financialmarkets [17]. A primary difference
between nearly all of these studies and the present research concerns
spatial resolution. Whereas processes like disease outbreaks and elec-
tion results can be addressed at a spatial resolution that covers an entire
city with a single prediction, criminal processes can vary dramatically
between individual city blocks. The work by Wang et al. comes closest
to the present research by using tweets drawn from local news agencies
[13]. The authors found preliminary evidence that such tweets can be
used to predict hit-and-run vehicular accidents and breaking-and-
entering crimes; however, their study did not address several key
aspects of social-media-based crime prediction. First, they used tweets
solely from hand-selected news agencies. These tweets, being written
by professional journalists, were relatively easy to process using current
text analysis techniques; however, this was done at the expense of ig-
noring hundreds of thousands of potentially important messages. Sec-
ond, the tweets used by Wang et al. were not associated with GPS
location information, which is often attached to Twitter messages and
indicates the user's location when posting the message. Thus, the au-
thors were unable to explore deeper issues concerning the geographic
origin of Twitter messages and the correlation between message origin
and criminal processes. Third, the authors only investigated two of the
many crime types tracked by police organizations, and they did not
compare their models with traditional hot-spot maps.

The present research addresses all limitations discussed above. We
combine historical crime records with Twitter data harvested from all
available Twitter users in the geographic area of interest. We address
some of the difficult textual issues described previously (e.g., symbols
and nonstandard vocabulary) using statistical language processing tech-
niques, andwe take full advantage ofGPS location information embedded
in many tweets. Furthermore, we demonstrate the performance of our
approach on a comprehensive set of 25 crime types, and we compare
our results with those obtained using standard hot-spot mapping
techniques.

3. Data collection

Chicago, Illinois ranks third in the United States in population
(2.7 million), second in the categories of total murders, robberies, aggra-
vated assaults, property crimes, and burglaries, andfirst in totalmotor ve-
hicle thefts (January–June, 2012 [18]). In addition to its large population
and high crime rates, Chicago maintains a rich data portal containing,
among other things, a complete listing of crimes documented by the Chi-
cago Police Department.1 Using the Data Portal, we collected information
on all crimes documented between January 1, 2013 and March 31, 2013
(n = 60,876). Each crime record in our subset contained a timestamp
of occurrence, latitude/longitude coordinates of the crime at the city-
block level, and one of 27 types (e.g., ASSAULT and THEFT). Table 1
shows the frequency of each crime type in our subset.

During the same time period, we also collected tweets tagged
with GPS coordinates falling within the city limits of Chicago, Illinois
(n= 1,528,184).We did this using the official Twitter Streaming API, de-
fining a collection bounding boxwith coordinates [−87.94011,41.64454]
(lower-left corner) and [−87.52413,42.02303] (upper-right corner).
Fig. 1 shows a time series of the tweets collected during this period and
Fig. 2 shows a graphical KDE of the tweets within the city limits of Chica-
go. As shown in Fig. 2, most GPS-tagged tweets are posted in the down-
town area of Chicago.

4. Analytic approach

To predict the occurrence of crime type T, we first defined a one-
month training window (January 1, 2013–January 31, 2013). We then
put down labeled points (latitude/longitude pairs) across the city limits
of Chicago. These points came from two sources: (1) from the locations
of known crimes of type Twithin the training window (these points re-
ceived a label T), and (2) from a grid of evenly spaced points at 200-
meter intervals, not coinciding with points from the first set (these
points received a labelNONE). Using all points, we trained a binary clas-
sifier with the following general form:

Pr Labelp ¼ Tj f 1 pð Þ; f 2 pð Þ;…; f n pð Þ
� �

¼ F f 1 pð Þ; f 2 pð Þ;…; f n pð Þð Þ: ð1Þ

https://data.cityofchicago.org


Table 1
Frequency of crime types in Chicago documented between January 1, 2013 andMarch 31,
2013. We excluded asterisked crimes from our study due to infrequency.

Crime type Frequency (%)

THEFT 12,498 (20.53%)
BATTERY 10,222 (16.79%)
NARCOTICS 7948 (13.06%)
CRIMINAL DAMAGE 5517 (9.06%)
OTHER OFFENSE 4183 (6.87%)
BURGLARY 3600 (5.91%)
MOTOR VEHICLE THEFT 3430 (5.63%)
ASSAULT 3374 (5.54%)
DECEPTIVE PRACTICE 2671 (4.39%)
ROBBERY 2333 (3.83%)
CRIMINAL TRESPASS 1745 (2.87%)
WEAPONS VIOLATION 635 (1.04%)
OFFENSE INVOLVING CHILDREN 593 (0.97%)
PUBLIC PEACE VIOLATION 583 (0.96%)
PROSTITUTION 418 (0.69%)
CRIM SEXUAL ASSAULT 264 (0.43%)
INTERFERENCE WITH PUBLIC OFFICER 244 (0.40%)
SEX OFFENSE 207 (0.34%)
LIQUOR LAW VIOLATION 121 (0.20%)
ARSON 79 (0.13%)
HOMICIDE 68 (0.11%)
KIDNAPPING 58 (0.10%)
GAMBLING 27 (0.04%)
STALKING 26 (0.04%)
INTIMIDATION 25 (0.04%)
OBSCENITY* 5 (0.01%)
NON-CRIMINAL* 2 (0.00%)
Total 60,876

Fig. 2. KDE for GPS-tagged Tweets that originated within the city limits of Chicago, Illinois
between January 1, 2013 and March 31, 2013.
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In words, Eq. (1) says that the probability of a crime of type T occur-
ring at a spatial point p equals some function F of the n features f1(p),
f2(p),…,fn(p) used to characterize p. We set F to be the logistic function,
leaving only the fi(p) features to be specified. In the next section, we
present feature f1(p), which quantifies the historical crime density at
point p. Next, in Subsection 4.2, we present features f2(p),…,fn(p),
which are derived from Twitter messages posted by users in the spatial
vicinity of p. In Subsection 4.3, we present the model in full mathemat-
ical detail and explain how we produced threat surfaces from the point
estimates of threat.

4.1. Historical crime density: feature f1(p)

To quantify the historical density of crime type T at a point p, we set
f1(p) to be the KDE at p:

f 1 pð Þ ¼ k p; hð Þ ¼ 1
Ph

XP
j¼1

K
p−pj

��� ������ ���
h

0
@

1
A: ð2Þ

In Eq. (2), p is the point at which a density estimate is needed, h is a
parameter – known as the bandwidth – that controls the smoothness of
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Fig. 1. Number of tweets collected daily between January 1, 2013 and March 31, 2013. The sha
sulted from a failure in our data collection software on those days.
the density estimate, P is the total number of crimes of type T that oc-
curred during the training window, j indexes a single crime location
from the trainingwindow, K is a density function (we used the standard
normal density function), ∥∙∥ is the Euclideannorm, and pj is the location
of crime j. We used the ks package within the R statistical software en-
vironment to estimate k(p,h), and we used the default plug-in band-
width estimator (Hpi) with a dscalar pilot to obtain an optimal value
for h. This standard approach is widely used by crime analysts to esti-
mate crime densities [7].

4.2. Information from Twitter messages: features f2,…,fn

The primary contribution of this article is an exploration of Eq. (1)
for n N 1. That is, the novelty of this research lies in the combination of
the standard kernel density estimate f1(p) with additional features
f2(p),…,fn(p) that describe point p using Twitter content. Intuitively,
one can think of each fi(p) (for i N 1) as representing the importance
of topic i-1 in the discussion that is transpiring among Twitter users in
the spatial neighborhood of p, with the total number of topics being n-
1 (n is analogous to k in k-means clustering, and we describe our ap-
proach for determining its value in Section 5).We defined spatial neigh-
borhoods in Chicago by layingdownevenly spaced cells 1000 meters on
each side. Fig. 3 shows the resulting neighborhood boundaries.

Given the neighborhoods defined above, the problem reduces to es-
timating the n-1 topic importance values for each neighborhood given
51 61 71 81

rp spike on day 34 coincided with the United States Super Bowl. The three large drops re-



Fig. 3. Neighborhood boundaries for computing tweet-based topics. We only used the
green neighborhoods (i.e., those within the city boundary) in our analysis.

Fig. 4. Plate notation for LDA, the parameters of which are as follows: β is the
hyperparameter for a Dirichlet distribution, from which the multinomial word distribu-
tion ϕ(z) is drawn (1≤ z≤ T), T is the number of topics to model, α is the hyperparameter
for a Dirichlet distribution, fromwhich themultinomial topic distribution θ(d) is drawn (1
≤ d≤D),D is the number of documents, z is a draw from θ(d) that identifies topicϕ(z), from
which an observed word w is drawn. z and w are drawn Nd times independently.
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the tweets posted by users in each neighborhood. We used latent
Dirichlet allocation (LDA) for this purpose [19]. LDA is a generative
probabilistic model of textual content that identifies coherent topics of
discussion within document collections. Fig. 4 shows the traditional
plate notation for LDA, and we summarize the inputs and outputs
below:

Documents: a collection of D textual documents with word
boundaries.
Number of topics (T): number of topics to model.

Using these inputs, the topic modeling process automatically infers
optimal settings for the following multinomial distributions:

Word distribution of topics (ϕ(z)): the probability that each word be-
longs to (or defines) a topic z.
Topic distribution of documents (θ(d)): the probability that each topic
belongs to (or defines) a document d.

Returning to Chicago and Eq. (1), imagine compiling into a single
“document” all tweets posted during the training windowwithin a sin-
gle neighborhood (see Fig. 3). Themap of Chicago then defines a collec-
tion of such documents, and the topic modeling process estimates the
strength of each topic in each neighborhood — precisely what we
need for our crime prediction model. For example, in the neighborhood
covering Chicago O'Hare Airport, the strongest topic (with probability
0.34) contains the following words:

(3) flight, plane, gate, terminal, airport, airlines, delayed, american,….

This is an intuitive result, since people often post tweets about trav-
eling while in an airport. Thus, for any point p falling into this neighbor-
hood, there exists a feature fi(p) = 0.34. The same point p is also
associated with the other T-1 topic probabilities, producing the full set
of topic features {f2(p),…,fi(p) = 0.34,…,fn(p)} for point p. Points in
other areas of the city will also have a value for fi (the “airport topic”),
but this value will generally be much lower since people in such areas
will be less focused on discussing airports and travel.

LDA topicmodeling is completely unsupervised, requiringnohuman
effort to define topics or identify topic probabilities within neighbor-
hoods. Similar to unsupervised clustering, topics do not have textual la-
bels. Above, we labeled fi the “airport topic” for explanation purposes
only— such labels do not exist in our models. LDA also does not capture
word order, making each topic an unordered set of words. For our pur-
poses, the key output of LDA is the probability of each topic in each
neighborhood. We hypothesized that these probabilities would add in-
formation to f1(p) (the historical crime density) by injecting personal-
ized descriptions from people's everyday lives into the model. Before
showing the final model formulation and describing its application,
we provide additional implementation details describing howwe trans-
formed raw tweets into the topic probabilities discussed above.

4.2.1. Implementing topic modeling for tweets
Twitter is an inherently challenging source of textual information for

reasons discussed earlier. Thus, deep semantic analysis of tweets via tra-
ditional methods [20] is unlikely to work well. Such methods suffer dra-
matic performance degradations when switching from their training
domain of newswire text to the relatively clean domain of general writ-
ten English [21]. We eschewed deep semantic analysis in favor of
shallower analysis via topicmodeling; however,wewere still confronted
with the problems of word boundary detection and filtering out irrele-
vant words (e.g., “the” and other so-called stop words). We addressed
these problems using the Twitter-specific tokenizer and part-of-speech
tagger developed by Owoputi et al. [22]. We processed each Tweet
using this software, and we retained all tokens marked with one of the
following syntactic categories:

common noun, pronoun, proper noun, nominal+ possessive,

proper noun + possessive, verb, adjective, adverb, interjection,
hashtag*, emoticon*, nominal + verbal, proper noun + verbal,
existential ‘there’ + verbal.

The list of retained syntactic categories is typical for filtering out
stop words, with the exception of the asterisked categories, which
are unique to the social media domain. It is particularly important
to use appropriate tokenization for emoticons (e.g., “:)”), which

image of Fig.�3
image of Fig.�4


2 The downtown Chicago area is the one that features most prominently in Fig. 5a.
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would probably be treated as separate tokens by a traditional
tokenizer but carry important semantic content describing the user's
emotional state.

Once the tweets had been tokenized and filtered, we applied the
MALLET toolkit [23], which outputs the following probabilities:

Pr tjrð Þ 1≤t≤T ¼ #topics
1≤r≤R ¼ #neighborhoods: ð4Þ

In words, Eq. (4) denotes the proportion of the discussion within
neighborhood r that is devoted to topic t. Each of the R neighbor-
hoods is described in terms of its T topic probabilities, as discussed
previously. A full description of the topic modeling algorithm is be-
yond the scope of this article, and we refer the interested reader to
the seminal presentation [19] as well as the official MALLET docu-
mentation [23].

4.3. Full model formulation and application

The full form of our crime prediction model (Eq. (1)) for crime type
T, including coefficients, is defined as follows:

Pr Labelp ¼ Tj f 1 pð Þ; f 2 pð Þ;…; f n pð Þ
� �

¼ 1

1þ e
− β0þ∏

n

i¼1
βi f i pð Þ

� � : ð5Þ

For i=1, fi(p) equals the KDE k(p,h). For i N 1, fi(p) equals Pr(i− 1|r)
from Eq. (4), where r is the unique topic neighborhood that spatially
contains p. Recall that, during training, we have a set of points that are
labeled with the crime type T and a set of points that are labeled as
NONE. Thus, building the binary logistic regression model in Eq. (5)
can proceed in the standard way once the density estimates and topic
modeling outputs are obtained.

For anymodel trained according to Eq. (5), we sought predictions for
crimes of type T for the first day following the training period. We ob-
tained these predictions by evaluating Eq. (5) at spatial points across
the prediction area. The set of prediction points included those obtained
by evenly spacing points at 200-meter intervals across the prediction
area. We also added to the set of prediction points all points where
crimes of type T occurred during the training window. We added
these points to force higher-resolution predictions in areas where we
had observed more crime in the past. In any case, a prediction point
was simply a latitude–longitude pair containing no ground-truth infor-
mation about future crime.

For a prediction point p, we obtained feature value f1(p) by
inspecting the density of crime T observed in the 31 days prior. We ob-
tained feature values f2(p),…,fn(p) by inspecting the topicmodeling out-
put for tweets observed in the 31 days prior within the neighborhood
covering p. At this point, themodel had already been trained and the co-
efficientsβiwere known, so estimating the probability of crime type T at
point pwas simply a matter of plugging in the feature values and calcu-
lating the result. Note that this only produced point estimates of threat
across the prediction area. Since an individual point does not cover any
geographic space, it was necessary to translate the point estimates into
surface estimates. To do this, we simply recovered the 200-meter by
200-meter squares formed by the prediction points spaced at 200-
meter intervals and averaged the predictions in each square to calculate
the threat for each square.

Fig. 5a shows a threat surface produced by using only the KDE fea-
ture f1(p), and Fig. 5b shows a threat surface produced by adding 100
Twitter topic features f2(p),…,f101(p) to the KDE feature. The former ap-
pears to be smooth, since it comprises 200-meter threat squares. The
latter also uses 200-meter threat squares, but any two points residing
in the same 1000-meter by 1000-meter topic neighborhood will have
identical topic-based feature values. Thus, most of the topic neighbor-
hoods in Fig. 5b appear to be uniformly colored. They are not, however,
as can be seen in the downtown Chicago area2: note the graded threat
levels within many of the downtown topic neighborhoods in Fig. 5b.
Such gradations are produced by changes in the KDE feature at a resolu-
tion of 200 meters.

Intuitively, the boundary between a safe neighborhood and a dan-
gerous neighborhood in Fig. 5b should not be crisp, at least not under
our neighborhood definition, which does not correlate with physical
barriers that might induce such a boundary. To operationalize this intu-
ition, we applied distance-weighted spatial interpolation to each pre-
diction point p in the topic-based models as follows:

PrI Labelp ¼ T;W
� �

¼
XN p;Wð Þj j

i¼1

W−D p;nið Þ
XN p;Wð Þj j

j¼1

W−D p;nj

� � � Pr Labelni ¼ T
� �

: ð6Þ

In Eq. (6), PrI is the probability interpolation function, W is a
windowing parameter of, for example 500 meters, N(p,W) is the set of
p's neighbors within a distance of W (this set includes p itself), D(p,ni)
is the straight-line distance between p and one of its neighbors ni, andPr
Labelni ¼ T
� �

is the non-interpolated probability given in Eq. (5). Thus,
the spatially interpolated probability at point p is the weighted average
of its neighbors' probabilities (including p itself), and theweights are in-
versely proportional to the distance between p and its neighbors. Fig. 6
shows the visual result of applying this smoothing operation to the
threat surface in Fig. 5b. In the following section, we present a formal
evaluation of various parameterizations of the models described above.

5. Evaluation and results

For each crime type T, we compared the model using only the KDE
feature f1(p) to a model combining f1(p) with features f2(p),…,fn(p) de-
rived fromTwitter topics.We usedMALLET to identify topic probabilities,
configured with 5000 Gibbs sampling iterations and an optimization in-
terval (how often to reestimate the α and β hyperparameters, see
Fig. 4) of 10, but otherwise used the default MALLET parameters. We
used LibLinear [24] to estimate coefficients within the logistic regression
model. To counter the effects of class imbalance (there are far more neg-

ative points than positive points), we set LibLinear's C parameter to N
P
,

withN and P being the counts of negative and positive points in the train-

ing set, respectively. Model execution entailed (1) training the model on
a 31-day window for crime type T, (2) making T predictions for the first
day following the training window, and (3) sliding one day into the fu-
ture and repeating. Thismirrors a practical setupwhere a new prediction
for T is run each day.

We evaluated the performance of each day's prediction using sur-
veillance plots, an example of which is shown in Fig. 7. A surveillance
plot measures the percentage of true T crimes during the prediction
window (y-axis) that occur within the x%most threatened area accord-
ing to the model's prediction for T. The surveillance plot in Fig. 7 says
that, if onewere tomonitor the top 20%most threatened area according
to the prediction for T, one would observe approximately 45% of T
crimes.We produced scalar summaries for surveillance curves by calcu-
lating the total area under the curve (AUC). Better prediction perfor-
mance is indicated by curves that approach the upper-left corner of
the plot area or, equivalently, by curves with higher AUC scores. An op-
timal prediction sorts the 200-meter prediction squares in descending
order of how many future crimes they will contain. This property
makes surveillance plots appropriate for decision makers, whomust al-
locate scarce resources (e.g., police patrols) across the geographic space.
Lastly, because each model execution produced a series of surveillance
plots for crime type T, one for each prediction day, we aggregated the



(a) Predicted threat surface using only the
KDE feature.

(b) Predicted threat surface using the
KDE feature and the Twitter features.

Fig. 5. Threat surfaces without (5a) and with (5b) Twitter topics.
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plots to measure a model's overall performance. For example, to com-
pute a model's aggregate y-value for crime type T at an x-value of 5%,
we first summed the number of true T crimes occurring in the top 5%
most threatened area for each prediction day. We then divided that
sum by the total number of true T crimes occurring across all prediction
days. Doing this for each possible x-value produced an aggregate curve
and aggregate AUC score, which we report in this article.

Evaluation proceeded in twophases. First, for each crime type,we op-
timized the number of topics and smoothing window in the Twitter-
based model during a development phase. We experimented with 100,
300, 500, 700, and 900 topics and smoothing windows of −1 (no
smoothing), 500, 1000, 1500, and 2000 meters. We executed each
Fig. 6. Spatially interpolated surface derived from Fig. 5b according to Eq. (6).
Twitter-based model parameterization for each crime type using the
sliding window approach described above with an initial training period
of January 1, 2013–January 31, 2013. We aggregated the evaluation re-
sults for the predicted days in February, and we used the aggregate
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AUC to select the optimal topic count and smoothing window for each
crime type. In a second evaluation phase, we executed the KDE-only
model and the Twitter-based model (with development-optimized pa-
rameters) for each crime type using the sliding window approach de-
scribed above with an initial training period of February 1, 2013–
February 28, 2013. We then aggregated the evaluation results for the
predicted days inMarch. The following pages show the resulting surveil-
lance plots for the 25 crime types in our Chicago dataset. In these plots,
series identifiers are formatted as “[# topics]_[smoothingW]”, with the
first value indicating the number of topics and the second value indicat-
ing the smoothing parameter. Thus, the first series “0_−1” is produced
using the KDE-only model, and the second series is produced by a
Twitter-based model with smoothing. The third series shows gains
from adding Twitter topics, and the identifier for this series indicates
the location of peak gain, which is shown using crosshairs at the coordi-
nates specified. The plots are sorted by improvement in AUC achieved by
the Twitter-based model versus the KDE-only model.

6. Discussion

6.1. Prediction performance and interpretation

Of the 25 crime types, 19 showed improvements in AUCwhen adding
Twitter topics to the KDE-only model. Crime types STALKING, CRIMINAL
DAMAGE, and GAMBLING showed the greatest increase in AUC (average
increase: 6.6 points absolute, average peak improvement: 23 points abso-
lute), whereas ARSON, KIDNAPPING, and INTIMIDATION showed the
greatest decrease in AUC (average decrease: 12 points absolute). The av-
erage peak improvement across all crime types was approximately 10
points absolute. When interpreting the results in Fig. 8, it is important
to bear in mind that, practically speaking, not all of the surveillance area
(the x-axis) is equally important. Security forces cannot typically surveil
all or even a large part of an area, making curve segments closer to x =
0more relevant. Consider, for example, the crime types THEFT and NAR-
COTICS. Each exhibited a peak improvement of seven points absolute
when adding Twitter topics and smoothing to the KDE-onlymodel; how-
ever, this improvement was realized much earlier for NARCOTICS than
THEFT (11% surveillance versus 30% surveillance, respectively).

6.2. The composition of predictive topics

In general, it is difficult to explainwhy crime types benefitedmore or
less from the addition of Twitter topics. The topic modeling process is
opaque and, similar to unsupervised clustering, it can be difficult to in-
terpret the output. However, we did notice trends in our results.
Looking at the first 12 crime types in Fig. 8 (i.e., those with highest
AUC improvements for the Twitter-based models versus KDE-only
models), we see that 9 used either 700 or 900 (the maximum) topics.
We found that it was easier to interpret the topics in these finer-
grained models. For example, below we list topics that were given
large positive and negative coefficients for CRIMINAL DAMAGE (700
topics) and THEFT (900 topics), respectively:

CRIM. DAM. t. 128 (β129= 2.79): center united blackhawks bulls….
THEFT t. 659 (β660=−1.22): aquarium shedd adler planetarium….

These two topics are easy to interpret as sports-oriented and
museum-oriented.3We found itmore difficult to interpret highlyweight-
ed topics in models with fewer topics, for example, PROSTITUTION (500
topics):

PROS. t. 25 (β26 = 4.60): lounge studios continental village
ukrainian ….
3 The United Center is a large sports arena in Chicago, and the Blackhawks and Bulls are
Chicago sports teams. Shedd and Adler are an aquarium and planetarium, respectively.
These anecdotal observations suggest that using more topics may
improve the interpretability of the topicmodeling output for crime pre-
diction; however, future investigations will be needed to confirm this.

Lastly, Fig. 9 plots the absolute value of coefficients (y-axis) for topic
features as a function of topic rank (x-axis), with topics along the x-axis
being sorted by absolute value of their coefficients. Three crime types
are shown: PROSTITUTION (500 topics), CRIMINAL DAMAGE (700
topics), and BURGLARY (900 topics). The weights are quite skewed in
each series, but less so when using fewer topics. For each crime type,
the most important topics receive weights that are close in magnitude
to the weights assigned to the KDE features (compare the endpoints
on the y-axis to the KDE feature coefficients shown in the legend).

6.3. Computational efficiency

The topic-based prediction model has a number of computational
bottlenecks. Aminor one is the tokenization and part-of-speech tagging
of tweets using the Twitter-specific tagger created by Owoputi et al.
[22]. This tagger is capable of tagging 1000 tweets per second on a single
3 GHz CPU core and uses less than 500 MB of RAM. Thus, we were typ-
ically able to process an entire month of GPS-tagged tweets (approxi-
mately 800,000) in 3 minutes using five CPU cores. A more serious
performance bottleneck was the topic modeling process carried out by
MALLET. This toolkit has been optimized for performance; however,
building a topic model from a month of tweets typically took
1–2 hours, and we could not find a good way to parallelize the process
since the model depends on all input tweets. Another major perfor-
mance bottleneck was observed in the extraction of Twitter topic prob-
abilities at each prediction point. We used PostgreSQL/PostGIS to store
topic probabilities for each neighborhood, and even with a heavily opti-
mized table index structure, extracting 900 topic probabilities for each
of 15,000 prediction points (a single prediction) proved to be an expen-
sive operation involving the retrieval of 13.5 million database values.
This retrieval was faster than the 1–2 hours required to build the topic
model, but it remained a significant contributor to the system's runtime.
Our aim in this article has been to explain the modeling techniques we
used and the results we obtained. We have not conducted formal
runtime performance evaluations, which we leave for future work.

7. Conclusions and future work

Prior to this research, the benefits of Twitter messages (or tweets)
for crime prediction were largely unknown. Specifically, the implica-
tions of GPS-tagged tweets had not been addressed, and very few of
themany possible crime types had been investigated.Moreover, perfor-
mance comparisons with standard hot-spot models had not been per-
formed. We have filled in these gaps. We have shown that the
addition of Twitter-derived features improves prediction performance
for 19 of 25 crime types and does so substantially for certain surveil-
lance ranges. These results indicate potential gains for criminal justice
decisionmakers: better crimepredictions should improve the allocation
of scarce resources such as police patrols and officer time, leading to a
reduction in wasted effort and decrease in crime response times, for ex-
ample. Future work should focus on the following areas:

Tweet and network analysis: We have not analyzed the textual con-
tent of tweets beyond tokenization, part-of-speech tagging, and
topic modeling. Digging deeper into the semantics of tweets could
provide performance improvements compared to the models we
have presented. For example, it would be interesting to analyze the
predicate–argument structure of tweets in order to extract the
events they describe and the actors in those events. We are not
aware of such analyzers specifically designed for tweets, but many
exist for standard newswire text and could be adapted to the Twitter
domain [25]. We also did not investigate the various network
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structures within Twitter (e.g., follower–followee and @-mentions).
Analyzing these networks might facilitate the anticipation of events
(e.g., parties) that are known to correlate with criminal activity.
Temporal modeling: Ourmodels do not properly account for temporal
effects such as trends, lags, and periodicity. Intuitively, it makes sense
that crime patterns could exhibit these behaviors and that Twitter
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8. Surveillance plots using KDE-only (series 1) and KDE + Twitter (series 2) models. Series id
ics. Peak gain is shown using crosshairs at the coordinates specified.
content might be more predictive when message timestamps are
taken into account. For example, one could identify trends within
the topic proportions for a neighborhood and incorporate a trend var-
iable (e.g., magnitude of increase or decrease) into the model. One
could also allow for delayed effects of Twitter topics, the intuition
being that Twitter users often anticipate crime-correlated events
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Fig. 8 (continued).
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(e.g., parties) when they compose their messages. Lastly, we did not
explore alternative modeling techniques like random forests, which
are capable of handling non-linear threats.
Incorporation of auxiliary data: Our modeling paradigm is able to ac-
commodate an arbitrary number of additional features. For example,
prior work has investigated various spatial and socioeconomic fea-
tures [13], whichmight complement theKDE and Twitter-based fea-
tures we used in our models. The City of Chicago maintains a large,
public repository of auxiliary datasets that could be incorporated
into the models. Given the number of available auxiliary datasets,
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future work will need to focus on scalability. We do not expect our
PostgreSQL/PostGIS configuration to support feature extraction
from hundreds of spatial datasets for thousands of prediction points.
Newer, non-relational data management techniques (e.g., NoSQL)
could provide a more scalable solution.
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